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ABSTRACT

This paper presents an unsupervised approach to Automatic
Language Identification (ALI) based on vowel system modeling.
Each language vowel system is modeled by a Gaussian Mixture
Model (GMM) trained with automatically detected vowels. Since
this detection is unsupervised and language independent, no
labeled data are required. GMMs are initialized using an efficient
data-driven variant of the LBG algorithm: the LBG-Rissanen
algorithm.

With 5 language from the OGI MLTS corpus and in a close set
identification task, we reach 79 % of correct identification using
only the vowel segments detected in 45 second duration
utterances for the male speakers.

1. INTRODUCTION

Automatic Language Identification (ALI) is one of the main
challenges for the next decade in automatic speech processing.
Today, many efforts have been focused on speech technology to
provide reliable and efficient Human-Computer Interfaces. With
the development of the world communication and of our multi-
ethnic societies (European Economic Community...), the
demand for multilingual capacities becomes a fact. The language
obstacle will remain until ALI systems reach excellent
performances and reliability in order not to be the bottleneck of
the overall system.

The standard ALI approach is based on phonotactic
discrimination via specific statistical language modeling [10]. In
most systems, phone recognition is merely considered as a front-
end and not exploited for the language likelihood generation.
This method yields a sub-optimal use of the phonetic and
phonological differences among languages though they carry a
substantial part of language identity. Exploiting this information
classically involves an HMM modeling that requires a
consequential amount of labeled data. We propose an alternative
approach that necessitates no labeled data, resulting in an
efficient unsupervised modeling. This approach is based on
differentiated phonetic modeling: it consists in speech utterance
segmentation according to phonetic categories (vowels,
fricatives...) and in separated model processing convenient with
each category. In the present paper, this method is assessed in the
framework of Vowel System (VS) modeling.

The choice of VS modeling is justified from a phonological point
of view since languages may be partially classified in an efficient
way according to their VS [9]: the 451 languages of the UPSID

database share 307 vowel systems, including 271 language-
specific ones. Thus, even if phonological vowel system
descriptions are not efficient enough to discriminate among all
the languages, they provide a relevant information that worth
being exploited.

The next section settles the framework of the proposed approach
and describes a global segmental ALI system that provides a
baseline system for comparison. The VS modeling system is
detailed in Section 3. Model topologies are settled by heuristic
and entropy based algorithm that is also described. Section 4
deals with the experiments we realize with the OGI multi-lingual
telephone speech corpus.

2. VOWEL SYSTEM MODELING IN ALI

2.1 Description of the
system

segmental reference

The reference system is similar to the GMM system described in
[10]. The main difference is that the cepstral analysis leading to
the observations is performed on variable length segments rather
than on constant duration frames. This system is noted hereunder
Global Segmental Modeling (GSM).

The training procedure consists in the following processing:

e The a priori “Forward-Backward Divergence”
algorithm [1] provides long steady and shorter transient
segments.

A speech activity detector is applied to discard pauses.

e A segmental cepstral analysis is performed on each
segment.

e A GMM per language is computed with the set of
language dependent observations.

The same acoustic processing is applied during recognition, and
the language is identified via a maximum likelihood computation
of the utterance according to the language dependent models.

2.2 Description of the VS modeling system

In the VS modeling approach (Figure 1), language independent
vowel detection is performed prior to the cepstral analysis. The
detection locates segments that match vowel structure according
to an unsupervised language-independent algorithm [7]. For each
language, a VS GMM model is trained with the set of detected
vowels. During recognition, the utterance likelihood is computed
with the detected vowels according to each VS model.
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Figure 1 - Block diagram of the VS modeling approach.
The upper part represents the acoustic preprocessing and
the lower part the language dependent Vowel System
Modeling.

Let L = {L;, L,,...Ly;} be the N; languages to identify; the
problem is to find the most likely language L" in the L set.

After the acoustic processing, we obtain for each segment a
concatenation of cepstral features. Let T be the number of
segments in the spoken utterance. O = {o0;, 0y, ..., o} is a
sequence of observation vectors. Each vector o; consists of a
parameter vector y; and a macro-class flag c;, equal to 1 if the
segment is detected as a vowel, and equal to 0 otherwise. In order
to simplify the formula, we note 0;={y;,c;}.

Given the observations O, the most likely language L according
to the VSM is defined by the following equation:

L =argmax(Pr(|0))=argmaxProl)] @

1<i<NL

using Bayes’ theorem and assuming that a priori language
probabilities are identical.

Under the standard GMM assumptions, we assume that each
segment is conditionally independent of each other. The VS
modeling expression is hence changed to:

T
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since ¢, is deterministic and only vowels are taken into account.

According to VS models, the most likely language computed in
the log-likelihood space is given by:

L =argm ZlogPr(ydb)} ®)
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3. VSM IMPLEMENTATION
3.1 Acoustic Processing

Each detected vowel is represented with a set of 8 Mel-
Frequency Cepstral Coefticients (MFCCs) and 8 delta-MFCCs.
The cepstral analysis is performed using a 256-point Hamming
window centered on the detected vowel. This parameter vector
may be extended with the duration of the underlying segment and
the energy and delta-energy coefficients.

A cepstral subtraction performs both blind deconvolution to
remove the channel effect and speaker normalization. For each
recording session, the average MFCC vector is computed over all
vowels; it is then subtracted from each vowel coefficients. The
calculation of the channel effect over the vowel segments rather
than over the whole utterance does not show any significant
differences but it performs faster.

3.2 Vowel System Modeling

Vowel System Models (VSMs) consist in a Gaussian mixture
model.

Let X = {x;,x2,..., xy} be the training set and IT = {(oy;W;,%;),
1 <i<Q} be the parameter set that defines a mixture of Q p-
dimensional Gaussians. The model that maximizes the overall
likelihood of the data is given by:
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where a; is the mixing weight of the ™ Gaussian.

The maximum likelihood parameters IT " is performed using the
well-known EM algorithm [3]. This algorithm presupposes that
the number of components Q and initial values is given for each
gaussian pdf. In our system, the LBG and the LBG-Rissanen
algorithms fix these parameters.

o Initializing GMM with the LBG algorithm

The LBG algorithm [5] elaborates a partition of the observation
space by performing an iterated clustering of the learning data
into codewords optimized according to the nearest neighbor rule.
The splitting procedure may be stopped either when the data
distortion variation drops under a given threshold or when a
given number of codewords is reached.

e Initializing GMM with the LBG-Rissanen algorithm

The LBG-Rissanen algorithm is similar to the LBG algorithm
except for the iterated procedure termination. Before splitting,
the Rissanen criterion /(g) [8], function of the size ¢ of the
current codebook is computed from the expression:

I(@)=D,(X)+2pgqlogN  (5)



In this expression, D,X) denotes the log-distortion of the
learning set X according to the current codebook, p, the
parameter space dimension and N the cardinal of X.

Minimizing /(g) results in the optimal codebook size according
to the Rissanen information criterion. We use this data driven
algorithm to determinate independently the optimal number of
gaussian pdf for each language.

o Identification rules

During the identification phase, all the vowels detected in the
utterance are gathered and parameterized. The likelihood of this
set of vowels Y = {y;, ¥,, ..., yy} according to each VS model L;
is given by:

Pr(v|L) =iPr(yi|Li) ©6)

where Pr(y/L;) denotes the likelihood of each vowel that is given
by:
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Furthermore, we hypothesize under the Winner Takes All (WTA)
assumption [6]; the expression (7) is then approximated by:
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4. EXPERIMENTS

4.1 Corpus description

Pr(y,

The VSM approach is tested with the well-known OGI
Multilingual Telephone Speech corpus. We limit our experiments
to five languages (French, Japanese, Korean, Spanish and
Vietnamese) that have been chosen according to their
phonological vowel systems. Spanish and Japanese vowel
systems are rather elementary (5 vowels) and quasi-identical
while Korean and French systems are more complex, with several
vowels with the same quality. Vietnamese system is of average
complexity.

The data are divided into two corpora, namely the learning and
the development sets. Each corpus consists in several utterances
(constrained and unconstrained). There is no overlap between the
speakers of each corpus. There are about 20 speakers per
language in the development subset and 50 speakers per
language in the learning one. In our experiments, we don’t take
female speakers into account because of the poor number (less
than 20 %). The identification tests are made with a subset of the
development corpus called 45s since this is the mean duration of
the utterances.

4.2 Global Segmental Modeling experiments

The reference language identification experiments are performed
with several parameter sets. The baseline observation consists of
8 MFCCs. The duration D of the segment may be added. Even if

vowels are rather steady sounds, it is well known that a dynamic
modeling is more accurate that a pure static one. More complex
sets, taking into account the 8 delta MFCCs and the energy
coefficients are also examined. The GSM are initialized using the
standard LBG algorithm, with a fixed number of codewords Q =
20.

Table 1 — Identification scores with the GSM among 5
languages (45s utterances).

Parameter Set Correct Identification Score
# 8 MFCCs 68 %
#2 8 MFCCs + D 71 %
#3 | 8 MFCCs + 8 DMFCCs +D 71 %
8 MFCCs + E + o
# 1 §DMFCCs+DE+D 2%

Further experiments have been performed in a 3 language
identification task (French, Japanese and Spanish) with both
male and female speakers in order to compare these results with
those given by Zissman with its GMM approach [10]. He reaches
65 % of correct identification (in its system, English replaces
French) while with the GSM, we get 68 % of correct
identification. Even if the languages are not exactly the same, it
shows that segmental GMM is at least as good as a constant
duration frame approach.

4.3 Vowel System Modeling experiments

Several experiments are reported with the same parameter sets as
above, noted #1 to #4.

e  Baseline VSM experiments

Experiments are performed with several parameter sets and
several GMM topologies, either with a number of gaussian pdfs
constant among the five languages (ranging from 10 to 30) or
with a language specific GMM size determined by LBG-
Rissanen (Table 2).

Table 2 — Correct identification scores (%) with the VSM
among 5 languages (45s utterances).

gor —Model | 1BG-10 | LBG-20 | LBG-30 | LBG-Rissanen
#1 57 57 59 63
) 63 60 59 67
#3 67 67 64 55
#4 65 69 64 56

Concerning constant size models, the best results (69 %) are
reached with the 19 parameter set (§ MFCCs + E + 8§ AMFCCs +
AE + D) for 20 gaussian components. Taking the segment
duration, the energy parameters and the dynamic cepstral
coefficients) into account improves the performance of the static
VSM (#1) of about 10 %.

Regarding LBG-Rissanen initializing, it reaches better results
than constant size models with the sets #1 and #2 while the




performances decrease using the sets #3 and #4. Explanations are
given by Table 3. It shows the number of gaussian components
computed by LBG-Rissanen algorithm for each language and for
each parameter set. It may be deduced that the algorithm
behavior is clearly different between low dimension parameter
set (#1 and #2) and high dimension sets (#3 and #4). The
codebook sizes computed in the first case are about 15-20
components and it is enough to get an efficient modeling, while
in high dimension sets, codebook sizes are too small to
accurately model each VS. This is probably due to a lack of data
that results in a sparse distribution that is not correctly handled
with by the LBG-Rissanen algorithm.

Table 3 — LBG-Rissanen codebook size for each
language and each parameter set.

French | Japanese | Korean | Spanish | Vietnamese
#1 26 21 19 23 17
# 20 11 14 17 14
#3 9 5 6 8 4
#4 7 4 5 7 4

standard LBG initializing (63 % to 67 %). Moreover, this
dimension information is still relevant when used in conjunction
with the LBG-pruning #3 model. The resulting correct
identification score reaches then 79 % with the 45 second
duration utterances from the male speakers.

5. CONCLUSION & PERSPECTIVES

This work proves that a significant part of the language
characterization is embedded in its vowel system. We show that
extracting and modeling this information is possible and
efficient. Keeping in mind that vowel segments hardly represent
more than 25 % of the overall utterance duration, the
differentiated modeling applied to vowel systems is validated. It
reaches 79 % of correct identification in a 5 language
identification task performed with the male speakers without
requiring any labeled data.

Similar VSMs may be evaluated with the female speakers and a
global system may be designed. At this moment other
differentiated models (fricatives, plosives...) are investigated [4].
Taking advantage of several sound-specific models is a quite
promising perspective to design totally unsupervised language

e Improved VSM experiments

In order to improve the identification robustness, a discriminative
pruning procedure is applied during the recognition stage: from
each test utterance, the 25 % of the vowel segments that result in
the lowest likelihood values according to each VSM are
discarded [2]. These more discriminative VSMs result in better
identification rates for constant size models: with the #3
parameter set and 20 gaussian pdfs per language, the correct
identification rate reaches 77 %.

Finally, a post-processing is applied to take advantage from both
the LBG-Rissanen efficiency for low dimension parameter sets
and pruning efficiency for high dimension ones. The results
provided by the LBG-Rissanen classifier computed with the #2
parameter set (denoted LBG-Rissanen #2) and the LBG classifier
estimated with #3 set and including the pruning procedure
(denoted LBG-pruning #3) are merged by summing the output
likelihood values. Since the two observation streams #2 and #3
are not statically independent, it does not result in joined
likelihood values.

Table 4 — Correct identification scores (%) with the
improved VSM among 5 languages (45s utterances).

LBG-Rissanen | LBG-pruning .
Model o ” Score merging
Identification
rate 67 77 79

e  Discussion

Including a pruning procedure during recognition improves the
performances from 67 % to 77 % with the #3 parameter set (8
MFCCs + 8 AMFCCs + D). Even if the #2 set is intrinsically
less discriminative, experiments show that data-driven LBG-
Rissanen algorithm provides a more efficient codebook than the

identification systems.
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